extension | φ:Q→Aut N | d | ρ | Label | ID |
(C2xC6).1S32 = D9xS4 | φ: S32/C3 → D6 ⊆ Aut C2xC6 | 36 | 6+ | (C2xC6).1S3^2 | 432,521 |
(C2xC6).2S32 = C62:5D6 | φ: S32/C3 → D6 ⊆ Aut C2xC6 | 18 | 6+ | (C2xC6).2S3^2 | 432,523 |
(C2xC6).3S32 = S3xC3.S4 | φ: S32/S3 → S3 ⊆ Aut C2xC6 | 36 | 12+ | (C2xC6).3S3^2 | 432,522 |
(C2xC6).4S32 = Dic3.D18 | φ: S32/C32 → C22 ⊆ Aut C2xC6 | 72 | 4 | (C2xC6).4S3^2 | 432,309 |
(C2xC6).5S32 = D18.4D6 | φ: S32/C32 → C22 ⊆ Aut C2xC6 | 72 | 4- | (C2xC6).5S3^2 | 432,310 |
(C2xC6).6S32 = D9xC3:D4 | φ: S32/C32 → C22 ⊆ Aut C2xC6 | 72 | 4 | (C2xC6).6S3^2 | 432,314 |
(C2xC6).7S32 = D18:D6 | φ: S32/C32 → C22 ⊆ Aut C2xC6 | 36 | 4+ | (C2xC6).7S3^2 | 432,315 |
(C2xC6).8S32 = C62.8D6 | φ: S32/C32 → C22 ⊆ Aut C2xC6 | 72 | 12- | (C2xC6).8S3^2 | 432,318 |
(C2xC6).9S32 = C62:D6 | φ: S32/C32 → C22 ⊆ Aut C2xC6 | 36 | 12+ | (C2xC6).9S3^2 | 432,323 |
(C2xC6).10S32 = C62.90D6 | φ: S32/C32 → C22 ⊆ Aut C2xC6 | 72 | | (C2xC6).10S3^2 | 432,675 |
(C2xC6).11S32 = C62.91D6 | φ: S32/C32 → C22 ⊆ Aut C2xC6 | 72 | | (C2xC6).11S3^2 | 432,676 |
(C2xC6).12S32 = C62.96D6 | φ: S32/C32 → C22 ⊆ Aut C2xC6 | 24 | 4 | (C2xC6).12S3^2 | 432,693 |
(C2xC6).13S32 = C3xD6.3D6 | φ: S32/C3xS3 → C2 ⊆ Aut C2xC6 | 24 | 4 | (C2xC6).13S3^2 | 432,652 |
(C2xC6).14S32 = Dic3xDic9 | φ: S32/C3xS3 → C2 ⊆ Aut C2xC6 | 144 | | (C2xC6).14S3^2 | 432,87 |
(C2xC6).15S32 = Dic9:Dic3 | φ: S32/C3xS3 → C2 ⊆ Aut C2xC6 | 144 | | (C2xC6).15S3^2 | 432,88 |
(C2xC6).16S32 = C18.Dic6 | φ: S32/C3xS3 → C2 ⊆ Aut C2xC6 | 144 | | (C2xC6).16S3^2 | 432,89 |
(C2xC6).17S32 = Dic3:Dic9 | φ: S32/C3xS3 → C2 ⊆ Aut C2xC6 | 144 | | (C2xC6).17S3^2 | 432,90 |
(C2xC6).18S32 = D18:Dic3 | φ: S32/C3xS3 → C2 ⊆ Aut C2xC6 | 144 | | (C2xC6).18S3^2 | 432,91 |
(C2xC6).19S32 = C6.18D36 | φ: S32/C3xS3 → C2 ⊆ Aut C2xC6 | 72 | | (C2xC6).19S3^2 | 432,92 |
(C2xC6).20S32 = D6:Dic9 | φ: S32/C3xS3 → C2 ⊆ Aut C2xC6 | 144 | | (C2xC6).20S3^2 | 432,93 |
(C2xC6).21S32 = C2xC9:Dic6 | φ: S32/C3xS3 → C2 ⊆ Aut C2xC6 | 144 | | (C2xC6).21S3^2 | 432,303 |
(C2xC6).22S32 = C2xDic3xD9 | φ: S32/C3xS3 → C2 ⊆ Aut C2xC6 | 144 | | (C2xC6).22S3^2 | 432,304 |
(C2xC6).23S32 = D18.3D6 | φ: S32/C3xS3 → C2 ⊆ Aut C2xC6 | 72 | 4 | (C2xC6).23S3^2 | 432,305 |
(C2xC6).24S32 = C2xC18.D6 | φ: S32/C3xS3 → C2 ⊆ Aut C2xC6 | 72 | | (C2xC6).24S3^2 | 432,306 |
(C2xC6).25S32 = C2xC3:D36 | φ: S32/C3xS3 → C2 ⊆ Aut C2xC6 | 72 | | (C2xC6).25S3^2 | 432,307 |
(C2xC6).26S32 = C2xS3xDic9 | φ: S32/C3xS3 → C2 ⊆ Aut C2xC6 | 144 | | (C2xC6).26S3^2 | 432,308 |
(C2xC6).27S32 = C2xD6:D9 | φ: S32/C3xS3 → C2 ⊆ Aut C2xC6 | 144 | | (C2xC6).27S3^2 | 432,311 |
(C2xC6).28S32 = C2xC9:D12 | φ: S32/C3xS3 → C2 ⊆ Aut C2xC6 | 72 | | (C2xC6).28S3^2 | 432,312 |
(C2xC6).29S32 = S3xC9:D4 | φ: S32/C3xS3 → C2 ⊆ Aut C2xC6 | 72 | 4 | (C2xC6).29S3^2 | 432,313 |
(C2xC6).30S32 = Dic3xC3:Dic3 | φ: S32/C3xS3 → C2 ⊆ Aut C2xC6 | 144 | | (C2xC6).30S3^2 | 432,448 |
(C2xC6).31S32 = C62.77D6 | φ: S32/C3xS3 → C2 ⊆ Aut C2xC6 | 144 | | (C2xC6).31S3^2 | 432,449 |
(C2xC6).32S32 = C62.78D6 | φ: S32/C3xS3 → C2 ⊆ Aut C2xC6 | 144 | | (C2xC6).32S3^2 | 432,450 |
(C2xC6).33S32 = C62.79D6 | φ: S32/C3xS3 → C2 ⊆ Aut C2xC6 | 72 | | (C2xC6).33S3^2 | 432,451 |
(C2xC6).34S32 = C62.80D6 | φ: S32/C3xS3 → C2 ⊆ Aut C2xC6 | 144 | | (C2xC6).34S3^2 | 432,452 |
(C2xC6).35S32 = C62.81D6 | φ: S32/C3xS3 → C2 ⊆ Aut C2xC6 | 144 | | (C2xC6).35S3^2 | 432,453 |
(C2xC6).36S32 = C62.82D6 | φ: S32/C3xS3 → C2 ⊆ Aut C2xC6 | 144 | | (C2xC6).36S3^2 | 432,454 |
(C2xC6).37S32 = C22xS3xD9 | φ: S32/C3xS3 → C2 ⊆ Aut C2xC6 | 72 | | (C2xC6).37S3^2 | 432,544 |
(C2xC6).38S32 = C2xS3xC3:Dic3 | φ: S32/C3xS3 → C2 ⊆ Aut C2xC6 | 144 | | (C2xC6).38S3^2 | 432,674 |
(C2xC6).39S32 = C2xDic3xC3:S3 | φ: S32/C3xS3 → C2 ⊆ Aut C2xC6 | 144 | | (C2xC6).39S3^2 | 432,677 |
(C2xC6).40S32 = C62.93D6 | φ: S32/C3xS3 → C2 ⊆ Aut C2xC6 | 72 | | (C2xC6).40S3^2 | 432,678 |
(C2xC6).41S32 = C2xC33:8(C2xC4) | φ: S32/C3xS3 → C2 ⊆ Aut C2xC6 | 72 | | (C2xC6).41S3^2 | 432,679 |
(C2xC6).42S32 = C2xC33:6D4 | φ: S32/C3xS3 → C2 ⊆ Aut C2xC6 | 144 | | (C2xC6).42S3^2 | 432,680 |
(C2xC6).43S32 = C2xC33:7D4 | φ: S32/C3xS3 → C2 ⊆ Aut C2xC6 | 72 | | (C2xC6).43S3^2 | 432,681 |
(C2xC6).44S32 = C2xC33:8D4 | φ: S32/C3xS3 → C2 ⊆ Aut C2xC6 | 72 | | (C2xC6).44S3^2 | 432,682 |
(C2xC6).45S32 = C2xC33:4Q8 | φ: S32/C3xS3 → C2 ⊆ Aut C2xC6 | 144 | | (C2xC6).45S3^2 | 432,683 |
(C2xC6).46S32 = C3xD6.4D6 | φ: S32/C3:S3 → C2 ⊆ Aut C2xC6 | 24 | 4 | (C2xC6).46S3^2 | 432,653 |
(C2xC6).47S32 = He3:C42 | φ: S32/C3:S3 → C2 ⊆ Aut C2xC6 | 144 | | (C2xC6).47S3^2 | 432,94 |
(C2xC6).48S32 = C62.D6 | φ: S32/C3:S3 → C2 ⊆ Aut C2xC6 | 144 | | (C2xC6).48S3^2 | 432,95 |
(C2xC6).49S32 = C62.3D6 | φ: S32/C3:S3 → C2 ⊆ Aut C2xC6 | 144 | | (C2xC6).49S3^2 | 432,96 |
(C2xC6).50S32 = C62.4D6 | φ: S32/C3:S3 → C2 ⊆ Aut C2xC6 | 72 | | (C2xC6).50S3^2 | 432,97 |
(C2xC6).51S32 = C62.5D6 | φ: S32/C3:S3 → C2 ⊆ Aut C2xC6 | 72 | | (C2xC6).51S3^2 | 432,98 |
(C2xC6).52S32 = C2xHe3:2Q8 | φ: S32/C3:S3 → C2 ⊆ Aut C2xC6 | 144 | | (C2xC6).52S3^2 | 432,316 |
(C2xC6).53S32 = C2xC6.S32 | φ: S32/C3:S3 → C2 ⊆ Aut C2xC6 | 72 | | (C2xC6).53S3^2 | 432,317 |
(C2xC6).54S32 = C62.9D6 | φ: S32/C3:S3 → C2 ⊆ Aut C2xC6 | 72 | 6 | (C2xC6).54S3^2 | 432,319 |
(C2xC6).55S32 = C2xHe3:2D4 | φ: S32/C3:S3 → C2 ⊆ Aut C2xC6 | 72 | | (C2xC6).55S3^2 | 432,320 |
(C2xC6).56S32 = C2xHe3:(C2xC4) | φ: S32/C3:S3 → C2 ⊆ Aut C2xC6 | 72 | | (C2xC6).56S3^2 | 432,321 |
(C2xC6).57S32 = C2xHe3:3D4 | φ: S32/C3:S3 → C2 ⊆ Aut C2xC6 | 72 | | (C2xC6).57S3^2 | 432,322 |
(C2xC6).58S32 = C62:2D6 | φ: S32/C3:S3 → C2 ⊆ Aut C2xC6 | 36 | 6 | (C2xC6).58S3^2 | 432,324 |
(C2xC6).59S32 = C33:6C42 | φ: S32/C3:S3 → C2 ⊆ Aut C2xC6 | 48 | | (C2xC6).59S3^2 | 432,460 |
(C2xC6).60S32 = C62.84D6 | φ: S32/C3:S3 → C2 ⊆ Aut C2xC6 | 48 | | (C2xC6).60S3^2 | 432,461 |
(C2xC6).61S32 = C62.85D6 | φ: S32/C3:S3 → C2 ⊆ Aut C2xC6 | 48 | | (C2xC6).61S3^2 | 432,462 |
(C2xC6).62S32 = C22xC32:D6 | φ: S32/C3:S3 → C2 ⊆ Aut C2xC6 | 36 | | (C2xC6).62S3^2 | 432,545 |
(C2xC6).63S32 = C2xC33:9(C2xC4) | φ: S32/C3:S3 → C2 ⊆ Aut C2xC6 | 48 | | (C2xC6).63S3^2 | 432,692 |
(C2xC6).64S32 = C2xC33:9D4 | φ: S32/C3:S3 → C2 ⊆ Aut C2xC6 | 48 | | (C2xC6).64S3^2 | 432,694 |
(C2xC6).65S32 = C2xC33:5Q8 | φ: S32/C3:S3 → C2 ⊆ Aut C2xC6 | 48 | | (C2xC6).65S3^2 | 432,695 |
(C2xC6).66S32 = C3xDic32 | central extension (φ=1) | 48 | | (C2xC6).66S3^2 | 432,425 |
(C2xC6).67S32 = C3xD6:Dic3 | central extension (φ=1) | 48 | | (C2xC6).67S3^2 | 432,426 |
(C2xC6).68S32 = C3xC6.D12 | central extension (φ=1) | 48 | | (C2xC6).68S3^2 | 432,427 |
(C2xC6).69S32 = C3xDic3:Dic3 | central extension (φ=1) | 48 | | (C2xC6).69S3^2 | 432,428 |
(C2xC6).70S32 = C3xC62.C22 | central extension (φ=1) | 48 | | (C2xC6).70S3^2 | 432,429 |
(C2xC6).71S32 = S3xC6xDic3 | central extension (φ=1) | 48 | | (C2xC6).71S3^2 | 432,651 |
(C2xC6).72S32 = C6xC6.D6 | central extension (φ=1) | 48 | | (C2xC6).72S3^2 | 432,654 |
(C2xC6).73S32 = C6xD6:S3 | central extension (φ=1) | 48 | | (C2xC6).73S3^2 | 432,655 |
(C2xC6).74S32 = C6xC3:D12 | central extension (φ=1) | 48 | | (C2xC6).74S3^2 | 432,656 |
(C2xC6).75S32 = C6xC32:2Q8 | central extension (φ=1) | 48 | | (C2xC6).75S3^2 | 432,657 |