Extensions 1→N→G→Q→1 with N=C2xC6 and Q=S32

Direct product G=NxQ with N=C2xC6 and Q=S32
dρLabelID
S32xC2xC648S3^2xC2xC6432,767

Semidirect products G=N:Q with N=C2xC6 and Q=S32
extensionφ:Q→Aut NdρLabelID
(C2xC6):1S32 = C3:S3xS4φ: S32/C3D6 ⊆ Aut C2xC636(C2xC6):1S3^2432,746
(C2xC6):2S32 = C62:10D6φ: S32/C3D6 ⊆ Aut C2xC62412+(C2xC6):2S3^2432,748
(C2xC6):3S32 = C3xS3xS4φ: S32/S3S3 ⊆ Aut C2xC6246(C2xC6):3S3^2432,745
(C2xC6):4S32 = S3xC3:S4φ: S32/S3S3 ⊆ Aut C2xC62412+(C2xC6):4S3^2432,747
(C2xC6):5S32 = C3:S3xC3:D4φ: S32/C32C22 ⊆ Aut C2xC672(C2xC6):5S3^2432,685
(C2xC6):6S32 = C62:23D6φ: S32/C32C22 ⊆ Aut C2xC636(C2xC6):6S3^2432,686
(C2xC6):7S32 = C62:24D6φ: S32/C32C22 ⊆ Aut C2xC6244(C2xC6):7S3^2432,696
(C2xC6):8S32 = C3xS3xC3:D4φ: S32/C3xS3C2 ⊆ Aut C2xC6244(C2xC6):8S3^2432,658
(C2xC6):9S32 = S3xC32:7D4φ: S32/C3xS3C2 ⊆ Aut C2xC672(C2xC6):9S3^2432,684
(C2xC6):10S32 = C22xS3xC3:S3φ: S32/C3xS3C2 ⊆ Aut C2xC672(C2xC6):10S3^2432,768
(C2xC6):11S32 = C3xDic3:D6φ: S32/C3:S3C2 ⊆ Aut C2xC6244(C2xC6):11S3^2432,659
(C2xC6):12S32 = C22xC32:4D6φ: S32/C3:S3C2 ⊆ Aut C2xC648(C2xC6):12S3^2432,769

Non-split extensions G=N.Q with N=C2xC6 and Q=S32
extensionφ:Q→Aut NdρLabelID
(C2xC6).1S32 = D9xS4φ: S32/C3D6 ⊆ Aut C2xC6366+(C2xC6).1S3^2432,521
(C2xC6).2S32 = C62:5D6φ: S32/C3D6 ⊆ Aut C2xC6186+(C2xC6).2S3^2432,523
(C2xC6).3S32 = S3xC3.S4φ: S32/S3S3 ⊆ Aut C2xC63612+(C2xC6).3S3^2432,522
(C2xC6).4S32 = Dic3.D18φ: S32/C32C22 ⊆ Aut C2xC6724(C2xC6).4S3^2432,309
(C2xC6).5S32 = D18.4D6φ: S32/C32C22 ⊆ Aut C2xC6724-(C2xC6).5S3^2432,310
(C2xC6).6S32 = D9xC3:D4φ: S32/C32C22 ⊆ Aut C2xC6724(C2xC6).6S3^2432,314
(C2xC6).7S32 = D18:D6φ: S32/C32C22 ⊆ Aut C2xC6364+(C2xC6).7S3^2432,315
(C2xC6).8S32 = C62.8D6φ: S32/C32C22 ⊆ Aut C2xC67212-(C2xC6).8S3^2432,318
(C2xC6).9S32 = C62:D6φ: S32/C32C22 ⊆ Aut C2xC63612+(C2xC6).9S3^2432,323
(C2xC6).10S32 = C62.90D6φ: S32/C32C22 ⊆ Aut C2xC672(C2xC6).10S3^2432,675
(C2xC6).11S32 = C62.91D6φ: S32/C32C22 ⊆ Aut C2xC672(C2xC6).11S3^2432,676
(C2xC6).12S32 = C62.96D6φ: S32/C32C22 ⊆ Aut C2xC6244(C2xC6).12S3^2432,693
(C2xC6).13S32 = C3xD6.3D6φ: S32/C3xS3C2 ⊆ Aut C2xC6244(C2xC6).13S3^2432,652
(C2xC6).14S32 = Dic3xDic9φ: S32/C3xS3C2 ⊆ Aut C2xC6144(C2xC6).14S3^2432,87
(C2xC6).15S32 = Dic9:Dic3φ: S32/C3xS3C2 ⊆ Aut C2xC6144(C2xC6).15S3^2432,88
(C2xC6).16S32 = C18.Dic6φ: S32/C3xS3C2 ⊆ Aut C2xC6144(C2xC6).16S3^2432,89
(C2xC6).17S32 = Dic3:Dic9φ: S32/C3xS3C2 ⊆ Aut C2xC6144(C2xC6).17S3^2432,90
(C2xC6).18S32 = D18:Dic3φ: S32/C3xS3C2 ⊆ Aut C2xC6144(C2xC6).18S3^2432,91
(C2xC6).19S32 = C6.18D36φ: S32/C3xS3C2 ⊆ Aut C2xC672(C2xC6).19S3^2432,92
(C2xC6).20S32 = D6:Dic9φ: S32/C3xS3C2 ⊆ Aut C2xC6144(C2xC6).20S3^2432,93
(C2xC6).21S32 = C2xC9:Dic6φ: S32/C3xS3C2 ⊆ Aut C2xC6144(C2xC6).21S3^2432,303
(C2xC6).22S32 = C2xDic3xD9φ: S32/C3xS3C2 ⊆ Aut C2xC6144(C2xC6).22S3^2432,304
(C2xC6).23S32 = D18.3D6φ: S32/C3xS3C2 ⊆ Aut C2xC6724(C2xC6).23S3^2432,305
(C2xC6).24S32 = C2xC18.D6φ: S32/C3xS3C2 ⊆ Aut C2xC672(C2xC6).24S3^2432,306
(C2xC6).25S32 = C2xC3:D36φ: S32/C3xS3C2 ⊆ Aut C2xC672(C2xC6).25S3^2432,307
(C2xC6).26S32 = C2xS3xDic9φ: S32/C3xS3C2 ⊆ Aut C2xC6144(C2xC6).26S3^2432,308
(C2xC6).27S32 = C2xD6:D9φ: S32/C3xS3C2 ⊆ Aut C2xC6144(C2xC6).27S3^2432,311
(C2xC6).28S32 = C2xC9:D12φ: S32/C3xS3C2 ⊆ Aut C2xC672(C2xC6).28S3^2432,312
(C2xC6).29S32 = S3xC9:D4φ: S32/C3xS3C2 ⊆ Aut C2xC6724(C2xC6).29S3^2432,313
(C2xC6).30S32 = Dic3xC3:Dic3φ: S32/C3xS3C2 ⊆ Aut C2xC6144(C2xC6).30S3^2432,448
(C2xC6).31S32 = C62.77D6φ: S32/C3xS3C2 ⊆ Aut C2xC6144(C2xC6).31S3^2432,449
(C2xC6).32S32 = C62.78D6φ: S32/C3xS3C2 ⊆ Aut C2xC6144(C2xC6).32S3^2432,450
(C2xC6).33S32 = C62.79D6φ: S32/C3xS3C2 ⊆ Aut C2xC672(C2xC6).33S3^2432,451
(C2xC6).34S32 = C62.80D6φ: S32/C3xS3C2 ⊆ Aut C2xC6144(C2xC6).34S3^2432,452
(C2xC6).35S32 = C62.81D6φ: S32/C3xS3C2 ⊆ Aut C2xC6144(C2xC6).35S3^2432,453
(C2xC6).36S32 = C62.82D6φ: S32/C3xS3C2 ⊆ Aut C2xC6144(C2xC6).36S3^2432,454
(C2xC6).37S32 = C22xS3xD9φ: S32/C3xS3C2 ⊆ Aut C2xC672(C2xC6).37S3^2432,544
(C2xC6).38S32 = C2xS3xC3:Dic3φ: S32/C3xS3C2 ⊆ Aut C2xC6144(C2xC6).38S3^2432,674
(C2xC6).39S32 = C2xDic3xC3:S3φ: S32/C3xS3C2 ⊆ Aut C2xC6144(C2xC6).39S3^2432,677
(C2xC6).40S32 = C62.93D6φ: S32/C3xS3C2 ⊆ Aut C2xC672(C2xC6).40S3^2432,678
(C2xC6).41S32 = C2xC33:8(C2xC4)φ: S32/C3xS3C2 ⊆ Aut C2xC672(C2xC6).41S3^2432,679
(C2xC6).42S32 = C2xC33:6D4φ: S32/C3xS3C2 ⊆ Aut C2xC6144(C2xC6).42S3^2432,680
(C2xC6).43S32 = C2xC33:7D4φ: S32/C3xS3C2 ⊆ Aut C2xC672(C2xC6).43S3^2432,681
(C2xC6).44S32 = C2xC33:8D4φ: S32/C3xS3C2 ⊆ Aut C2xC672(C2xC6).44S3^2432,682
(C2xC6).45S32 = C2xC33:4Q8φ: S32/C3xS3C2 ⊆ Aut C2xC6144(C2xC6).45S3^2432,683
(C2xC6).46S32 = C3xD6.4D6φ: S32/C3:S3C2 ⊆ Aut C2xC6244(C2xC6).46S3^2432,653
(C2xC6).47S32 = He3:C42φ: S32/C3:S3C2 ⊆ Aut C2xC6144(C2xC6).47S3^2432,94
(C2xC6).48S32 = C62.D6φ: S32/C3:S3C2 ⊆ Aut C2xC6144(C2xC6).48S3^2432,95
(C2xC6).49S32 = C62.3D6φ: S32/C3:S3C2 ⊆ Aut C2xC6144(C2xC6).49S3^2432,96
(C2xC6).50S32 = C62.4D6φ: S32/C3:S3C2 ⊆ Aut C2xC672(C2xC6).50S3^2432,97
(C2xC6).51S32 = C62.5D6φ: S32/C3:S3C2 ⊆ Aut C2xC672(C2xC6).51S3^2432,98
(C2xC6).52S32 = C2xHe3:2Q8φ: S32/C3:S3C2 ⊆ Aut C2xC6144(C2xC6).52S3^2432,316
(C2xC6).53S32 = C2xC6.S32φ: S32/C3:S3C2 ⊆ Aut C2xC672(C2xC6).53S3^2432,317
(C2xC6).54S32 = C62.9D6φ: S32/C3:S3C2 ⊆ Aut C2xC6726(C2xC6).54S3^2432,319
(C2xC6).55S32 = C2xHe3:2D4φ: S32/C3:S3C2 ⊆ Aut C2xC672(C2xC6).55S3^2432,320
(C2xC6).56S32 = C2xHe3:(C2xC4)φ: S32/C3:S3C2 ⊆ Aut C2xC672(C2xC6).56S3^2432,321
(C2xC6).57S32 = C2xHe3:3D4φ: S32/C3:S3C2 ⊆ Aut C2xC672(C2xC6).57S3^2432,322
(C2xC6).58S32 = C62:2D6φ: S32/C3:S3C2 ⊆ Aut C2xC6366(C2xC6).58S3^2432,324
(C2xC6).59S32 = C33:6C42φ: S32/C3:S3C2 ⊆ Aut C2xC648(C2xC6).59S3^2432,460
(C2xC6).60S32 = C62.84D6φ: S32/C3:S3C2 ⊆ Aut C2xC648(C2xC6).60S3^2432,461
(C2xC6).61S32 = C62.85D6φ: S32/C3:S3C2 ⊆ Aut C2xC648(C2xC6).61S3^2432,462
(C2xC6).62S32 = C22xC32:D6φ: S32/C3:S3C2 ⊆ Aut C2xC636(C2xC6).62S3^2432,545
(C2xC6).63S32 = C2xC33:9(C2xC4)φ: S32/C3:S3C2 ⊆ Aut C2xC648(C2xC6).63S3^2432,692
(C2xC6).64S32 = C2xC33:9D4φ: S32/C3:S3C2 ⊆ Aut C2xC648(C2xC6).64S3^2432,694
(C2xC6).65S32 = C2xC33:5Q8φ: S32/C3:S3C2 ⊆ Aut C2xC648(C2xC6).65S3^2432,695
(C2xC6).66S32 = C3xDic32central extension (φ=1)48(C2xC6).66S3^2432,425
(C2xC6).67S32 = C3xD6:Dic3central extension (φ=1)48(C2xC6).67S3^2432,426
(C2xC6).68S32 = C3xC6.D12central extension (φ=1)48(C2xC6).68S3^2432,427
(C2xC6).69S32 = C3xDic3:Dic3central extension (φ=1)48(C2xC6).69S3^2432,428
(C2xC6).70S32 = C3xC62.C22central extension (φ=1)48(C2xC6).70S3^2432,429
(C2xC6).71S32 = S3xC6xDic3central extension (φ=1)48(C2xC6).71S3^2432,651
(C2xC6).72S32 = C6xC6.D6central extension (φ=1)48(C2xC6).72S3^2432,654
(C2xC6).73S32 = C6xD6:S3central extension (φ=1)48(C2xC6).73S3^2432,655
(C2xC6).74S32 = C6xC3:D12central extension (φ=1)48(C2xC6).74S3^2432,656
(C2xC6).75S32 = C6xC32:2Q8central extension (φ=1)48(C2xC6).75S3^2432,657

׿
x
:
Z
F
o
wr
Q
<